Cells derived from the circulation contribute to the repair of lung injury.

نویسندگان

  • Shinji Abe
  • Craig Boyer
  • Xiangde Liu
  • Fu Qiang Wen
  • Tetsu Kobayashi
  • Qiuhong Fang
  • Xingqi Wang
  • Mitsuyoshi Hashimoto
  • J Graham Sharp
  • Stephen I Rennard
چکیده

Bone marrow (stem/progenitor) cells have been shown to "differentiate" into cells in multiple tissues, including lung. A low number of hematopoietic stem/progenitor cells also circulate in peripheral blood. The physiologic roles of these cells are still uncertain. This study was designed to test, using parabiotic mice that were joined surgically, whether stem/progenitor cells in blood contributed to the regeneration of lung after injury. Parabiotic mice were generated surgically by joining green fluorescent protein transgenic mice and wild-type littermates. These mice developed a common circulation (approximately 50% green cells in blood) by 2 weeks after surgery. The wild-type mouse was either uninjured or lethally irradiated or received intratracheal elastase or the combination of radiation with intratracheal elastase injection. Radiation or the combination of radiation with elastase significantly increased the proportion of bright green cells in the lungs of the wild-type mice. Morphologically, interstitial monocytes/macrophages, subepithelial fibroblast-like interstitial cells, and additionally type I alveolar epithelial cells immunostained for green fluorescent protein in wild-type mice. Approximately 5 to 20% of lung fibroblasts primary cultured from injured wild-type mice were green fluorescent protein expressing cells, indicating their blood derivation. This study demonstrates that stem/progenitor cells in blood contribute to the repair of lung injury in irradiated mice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

جداسازی سلول‌های بنیادی مزانشیمی از بافت چربی و ریه‌ی موش BALB/c و مقایسه‌ی ایمونوفنوتایپ آن‌ها

Background and Objective: Mesenchymal stem cells are promising sources of stem cells for tissue repair because of their ability to differentiate into different cells, easy proliferation and culture, and immunomodulatory properties. Despite extensive research on the immunophenotype of mesenchymal stem cells, a lack of specific markers comprises challenges for researchers. The aim of this researc...

متن کامل

Repair of Spinal Cord Injury by Co-Transplantation of embryonic Stem Cell-Derived Motor Neuron and Olfactory Ensheathing Cell

Background: The failure of regeneration after spinal cord injury (SCI) has been attributed to axonal demyelination and neuronal death. Cellular replacement and white matter regeneration are both necessary for SCI repair. In this study, we evaluated the co-transplantation of olfactory ensheathing cells (OEC) and embryonic stem (ES) cell-derived motor neurons (ESMN) on contused SCI. Methods: OEC...

متن کامل

Increased circulating endothelial progenitor cells in patients with bacterial pneumonia: evidence that bone marrow derived cells contribute to lung repair.

BACKGROUND Tissue repair often occurs in organs damaged by various inflammatory diseases including pneumonia. Inflammatory stimuli induce a rapid and massive release of inflammatory cells from the bone marrow. Recent studies have suggested that bone marrow cells have the potential to differentiate into a variety of cell types. It has been shown that administration of lipopolysaccharide (LPS) to...

متن کامل

Effects of Valproic Acid, a Histone Deacetylase Inhibitor, on improvement of Locomotor Function in Rat Spinal Cord Injury Based on Epigenetic Science

Background: The primary phase of traumatic spinal cord injury (SCI) starts by a complex local inflammatory reaction such as secretion of pro-inflammatory cytokines from microglia and injured cells that substantially contribute to exacerbating pathogenic events in secondary phase. Valproic acid (VPA) is a histone deacetylase inhibitor. Acetylation of histones is critical to cellular inflammatory...

متن کامل

Effects of rabbit pinna-derived blastema cells on tendon healing

Objective(s): Tendon healing is substantially slow and often associated with suboptimal repair. Cell therapy is one of the promising methods to improve tendon repair. Blastema, a population of undifferentiated cells, represents characteristics of pluripotent mesenchymal stem cells and has the potentials to be used in regenerative medicine. The aim of this study was to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of respiratory and critical care medicine

دوره 170 11  شماره 

صفحات  -

تاریخ انتشار 2004